Lifecycle
Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction
Time series anomaly detection is challenging due to the complexity and variety of patterns that can occur. One major difficulty arises from modeling time-dependent relationships to find contextual anomalies while maintaining detection accuracy for point anomalies. In this paper, we propose a framework for unsupervised time series anomaly detection that utilizes point-based and sequence-based reconstruction models. The point-based model attempts to quantify point anomalies, and the sequence-based model attempts to quantify both point and contextual anomalies. Under the formulation that the observed time point is a two-stage deviated value from a nominal time point, we introduce a nominality score calculated from the ratio of a combined value of the reconstruction errors. We derive an induced anomaly score by further integrating the nominality score and anomaly score, then theoretically prove the superiority of the induced anomaly score over the original anomaly score under certain conditions. Extensive studies conducted on several public datasets show that the proposed framework outperforms most state-of-the-art baselines for time series anomaly detection.
Large Language Models for Water Distribution Systems Modeling and Decision-Making
Goldshtein, Yinon, Perelman, Gal, Schuster, Assaf, Ostfeld, Avi
The design, operations, and management of water distribution systems (WDS) involve complex mathematical models. These models are continually improving due to computational advancements, leading to better decision-making and more efficient WDS management. However, the significant time and effort required for modeling, programming, and analyzing results remain substantial challenges. Another issue is the professional burden, which confines the interaction with models, databases, and other sophisticated tools to a small group of experts, thereby causing non-technical stakeholders to depend on these experts or make decisions without modeling support. Furthermore, explaining model results is challenging even for experts, as it is often unclear which conditions cause the model to reach a certain state or recommend a specific policy. The recent advancements in Large Language Models (LLMs) open doors for a new stage in human-model interaction. This study proposes a framework of plain language interactions with hydraulic and water quality models based on LLM-EPANET architecture. This framework is tested with increasing levels of complexity of queries to study the ability of LLMs to interact with WDS models, run complex simulations, and report simulation results. The performance of the proposed framework is evaluated across several categories of queries and hyper-parameter configurations, demonstrating its potential to enhance decision-making processes in WDS management.
Time-EAPCR: A Deep Learning-Based Novel Approach for Anomaly Detection Applied to the Environmental Field
Liu, Lei, Lu, Yuchao, An, Ling, Liang, Huajie, Zhou, Chichun, Zhang, Zhenyu
As human activities intensify, environmental systems such as aquatic ecosystems and water treatment systems face increasingly complex pressures, impacting ecological balance, public health, and sustainable development, making intelligent anomaly monitoring essential. However, traditional monitoring methods suffer from delayed responses, insufficient data processing capabilities, and weak generalisation, making them unsuitable for complex environmental monitoring needs.In recent years, machine learning has been widely applied to anomaly detection, but the multi-dimensional features and spatiotemporal dynamics of environmental ecological data, especially the long-term dependencies and strong variability in the time dimension, limit the effectiveness of traditional methods.Deep learning, with its ability to automatically learn features, captures complex nonlinear relationships, improving detection performance. However, its application in environmental monitoring is still in its early stages and requires further exploration.This paper introduces a new deep learning method, Time-EAPCR (Time-Embedding-Attention-Permutated CNN-Residual), and applies it to environmental science. The method uncovers feature correlations, captures temporal evolution patterns, and enables precise anomaly detection in environmental systems.We validated Time-EAPCR's high accuracy and robustness across four publicly available environmental datasets. Experimental results show that the method efficiently handles multi-source data, improves detection accuracy, and excels across various scenarios with strong adaptability and generalisation. Additionally, a real-world river monitoring dataset confirmed the feasibility of its deployment, providing reliable technical support for environmental monitoring.
NANOGPT: A Query-Driven Large Language Model Retrieval-Augmented Generation System for Nanotechnology Research
Chandrasekhar, Achuth, Farimani, Omid Barati, Ajenifujah, Olabode T., Ock, Janghoon, Farimani, Amir Barati
This paper presents the development and application of a Large Language Model Retrieval-Augmented Generation (LLM-RAG) system tailored for nanotechnology research. The system leverages the capabilities of a sophisticated language model to serve as an intelligent research assistant, enhancing the efficiency and comprehensiveness of literature reviews in the nanotechnology domain. Central to this LLM-RAG system is its advanced query backend retrieval mechanism, which integrates data from multiple reputable sources. The system retrieves relevant literature by utilizing Google Scholar's advanced search, and scraping open-access papers from Elsevier, Springer Nature, and ACS Publications. This multifaceted approach ensures a broad and diverse collection of up-to-date scholarly articles and papers. The proposed system demonstrates significant potential in aiding researchers by providing a streamlined, accurate, and exhaustive literature retrieval process, thereby accelerating research advancements in nanotechnology. The effectiveness of the LLM-RAG system is validated through rigorous testing, illustrating its capability to significantly reduce the time and effort required for comprehensive literature reviews, while maintaining high accuracy, query relevance and outperforming standard, publicly available LLMS.
Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks
We present an agentic, autonomous graph expansion framework that iteratively structures and refines knowledge in situ. Unlike conventional knowledge graph construction methods relying on static extraction or single-pass learning, our approach couples a reasoning-native large language model with a continually updated graph representation. At each step, the system actively generates new concepts and relationships, merges them into a global graph, and formulates subsequent prompts based on its evolving structure. Through this feedback-driven loop, the model organizes information into a scale-free network characterized by hub formation, stable modularity, and bridging nodes that link disparate knowledge clusters. Over hundreds of iterations, new nodes and edges continue to appear without saturating, while centrality measures and shortest path distributions evolve to yield increasingly distributed connectivity. Our analysis reveals emergent patterns, such as the rise of highly connected 'hub' concepts and the shifting influence of 'bridge' nodes, indicating that agentic, self-reinforcing graph construction can yield open-ended, coherent knowledge structures. Applied to materials design problems, we present compositional reasoning experiments by extracting node-specific and synergy-level principles to foster genuinely novel knowledge synthesis, yielding cross-domain ideas that transcend rote summarization and strengthen the framework's potential for open-ended scientific discovery. We discuss other applications in scientific discovery and outline future directions for enhancing scalability and interpretability.
Cracking the Code: Enhancing Development finance understanding with artificial intelligence
Analyzing development projects is crucial for understanding donors aid strategies, recipients priorities, and to assess development finance capacity to adress development issues by on-the-ground actions. In this area, the Organisation for Economic Co-operation and Developments (OECD) Creditor Reporting System (CRS) dataset is a reference data source. This dataset provides a vast collection of project narratives from various sectors (approximately 5 million projects). While the OECD CRS provides a rich source of information on development strategies, it falls short in informing project purposes due to its reporting process based on donors self-declared main objectives and pre-defined industrial sectors. This research employs a novel approach that combines Machine Learning (ML) techniques, specifically Natural Language Processing (NLP), an innovative Python topic modeling technique called BERTopic, to categorise (cluster) and label development projects based on their narrative descriptions. By revealing existing yet hidden topics of development finance, this application of artificial intelligence enables a better understanding of donor priorities and overall development funding and provides methods to analyse public and private projects narratives.
Nominality Score Conditioned Time Series Anomaly Detection by Point/Sequential Reconstruction
Time series anomaly detection is challenging due to the complexity and variety of patterns that can occur. One major difficulty arises from modeling time-dependent relationships to find contextual anomalies while maintaining detection accuracy for point anomalies. In this paper, we propose a framework for unsupervised time series anomaly detection that utilizes point-based and sequence-based reconstruction models. The point-based model attempts to quantify point anomalies, and the sequence-based model attempts to quantify both point and contextual anomalies. Under the formulation that the observed time point is a two-stage deviated value from a nominal time point, we introduce a nominality score calculated from the ratio of a combined value of the reconstruction errors. We derive an induced anomaly score by further integrating the nominality score and anomaly score, then theoretically prove the superiority of the induced anomaly score over the original anomaly score under certain conditions. Extensive studies conducted on several public datasets show that the proposed framework outperforms most state-of-the-art baselines for time series anomaly detection.
MAAT: Mamba Adaptive Anomaly Transformer with association discrepancy for time series
Sellam, Abdellah Zakaria, Benaissa, Ilyes, Taleb-Ahmed, Abdelmalik, Patrono, Luigi, Distante, Cosimo
Anomaly detection in time series is essential for industrial monitoring and environmental sensing, yet distinguishing anomalies from complex patterns remains challenging. Existing methods like the Anomaly Transformer and DCdetector have progressed, but they face limitations such as sensitivity to short-term contexts and inefficiency in noisy, non-stationary environments. To overcome these issues, we introduce MAAT, an improved architecture that enhances association discrepancy modeling and reconstruction quality. MAAT features Sparse Attention, efficiently capturing long-range dependencies by focusing on relevant time steps, thereby reducing computational redundancy. Additionally, a Mamba-Selective State Space Model is incorporated into the reconstruction module, utilizing a skip connection and Gated Attention to improve anomaly localization and detection performance. Extensive experiments show that MAAT significantly outperforms previous methods, achieving better anomaly distinguishability and generalization across various time series applications, setting a new standard for unsupervised time series anomaly detection in real-world scenarios.
Scalable and Robust Physics-Informed Graph Neural Networks for Water Distribution Systems
Ashraf, Inaam, Artelt, Andrรฉ, Hammer, Barbara
Water distribution systems (WDSs) are an important part of critical infrastructure becoming increasingly significant in the face of climate change and urban population growth. We propose a robust and scalable surrogate deep learning (DL) model to enable efficient planning, expansion, and rehabilitation of WDSs. Our approach incorporates an improved graph neural network architecture, an adapted physics-informed algorithm, an innovative training scheme, and a physics-preserving data normalization method. Evaluation results on a number of WDSs demonstrate that our model outperforms the current state-of-the-art DL model. Moreover, our method allows us to scale the model to bigger and more realistic WDSs. Furthermore, our approach makes the model more robust to out-of-distribution input features (demands, pipe diameters). Hence, our proposed method constitutes a significant step towards bridging the simulation-to-real gap in the use of artificial intelligence for WDSs.
Application of Artificial Intelligence (AI) in Civil Engineering
Awolusi, Temitope Funmilayo, Finbarrs-Ezema, Bernard Chukwuemeka, Chukwudulue, Isaac Munachimdinamma, Azab, Marc
Hard computing generally deals with precise data, which provides ideal solutions to problems. However, in the civil engineering field, amongst other disciplines, that is not always the case as real-world systems are continuously changing. Here lies the need to explore soft computing methods and artificial intelligence to solve civil engineering shortcomings. The integration of advanced computational models, including Artificial Neural Networks (ANNs), Fuzzy Logic, Genetic Algorithms (GAs), and Probabilistic Reasoning, has revolutionized the domain of civil engineering. These models have significantly advanced diverse sub-fields by offering innovative solutions and improved analysis capabilities. Sub-fields such as: slope stability analysis, bearing capacity, water quality and treatment, transportation systems, air quality, structural materials, etc. ANNs predict non-linearities and provide accurate estimates. Fuzzy logic uses an efficient decision-making process to provide a more precise assessment of systems. Lastly, while GAs optimizes models (based on evolutionary processes) for better outcomes, probabilistic reasoning lowers their statistical uncertainties.